Physics 178/278 - David Kleinfeld - Winter 2017 (Corrected yet

incomplete notes)

1 Balanced networks: Trading speed for noise

1.1 Scaling of neuronal inputs

An interesting observation is that the subthresold neuronal voltage in cortical neu-
rons is very noise. Naively, one might expect that the subthreshold potential would
be noisy if there ware relatively few inputs, not inconstent with the notion of a few
strong inputs that one sees in cortical slice experiments. But the other possibility
is that the input is so noisy because large excitatory inputs are offset by large in-
hibitory inputs, so that their mean value just about cancels but the variances, of
course, add. The notion of large offsetting currents comes from the intracellular
recording experiments in cat V1 rom the laboratories of Ferster, Fregnac, Douglas
and others, in which the excitatory and inhibitory inputs are found to be both large
and have the same tuning curves, so that their inputs act to balance earn other.
The gain from offsetting currents is that a transient increase in excitatory input, as
may occur with a large burst of input, will rapidly depolarize the cell. So balanced
networks trade noise for speed.

(A) Temporal structure of the inputs and
activity of a single excitatory unit. The upper panel
shows the total excitatory input (consisting of ex-
ternal input and excitatory feedback) (upper trace)
and the total inhibitory input (lower trace), as well
as the net input (middle trace). The currents are
shown in units of the threshold (dashed line). They
were calculated by sampling from the Gaussian
statistics of the currents predicted by the theory.

Below, the times when the cell switched to the
active state are indicated. The cell is set to the
B active state when a suprathreshold net input co-
incides with the update time of the cell.  (B) The
mean activity of the excitatory neurons (solid line)
and the inhibitory ones (dashed line) as functions
A . of the activity of the external units. The activ-
ities shown here and in the following figures cor-
respond to firing rates divided by their maximum
value. Assuming a neuronal maximum rate of
1000 Hz, a mean activity of 0.1 corresponds to a
firing rate of 100 Hz.
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Let’s start with a warm up on scaling of noise. The input to cell i is y; with
1 =1, 2, ... , N, while the output of the neuron is take as taken as V; with i =
1, 2, ... , N where V is a binary variable, 1 if the cell spikes and 0 if it does not.
Let’s say that of the /N neurons in the network, only K make synaptic input to the
1 — th neuron. Let’s also say that the probability that a cell is spiking is m, that
is, V' =1 with probability m and V = 0 with probability 1 — m. The input to the



7 — th neuron is:
K
j=1

Let’s address the central issue, which is scaling of the synaptic inputs. The standard
thermodynamic scaling is that each input scales as 1/K. For simplicity, let’s take
all of the inputs to be equal, so

Then
K
> Vi (1.3)

The average value is

K
<p> = Y <V > (1.4)

and the variance, under the assumption that the correlations in the neuronal outputs
are zero, is

<pr> = (V[Z)éwj—<vj>)2 (1.5)
- (&) (Sywen)
= e )
= T 0

which is always positive and, crucially, diminishes as mK — oc.

The challenge is to recast the input so that the variance does not diminish as a
function of K. This is where the idea of balanced excitation and inhibition come in
to play. We need the input to be the sums of two terms, and we also need to noodle
with the scaling so that the variance goes to a constant as mK — oo. Let I/sz be
excitatory input and Wé be inhibitory input, simplified as above but now scaled as

1/VK, so that
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where we implicitly fix the sign of the inhibition, and
K
weo= 3 (WEVE+wiv)) (1.7)
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The average value is
wE wi
<pu> = ——=KmP — ——=Km/' (1.8)

VK VK
= ﬁ(WEmE — WImI>

which can be large if the excitatory and inhibitory terms do not balance. The
variance, again under the assumption that the correlations in the neuronal outputs
are zero, is

< ,Uz2 S — (M;f)Q (mE B (mE)2> K+ (M;(I)2 ( I (m1)2> K (1 9)
_ (WEmE>21 ;l;n + (W1m1)21 ;;n

The important point is that there is no decrement as m*K — oo or m! K — 00.
Further, the variance remains nonzero for the special case of WEm®” = W!m! where
tthe network is in perfect balance.

Before we go further, it is fair to ask if there is evidence to support this scaling,
which would depend on a homeostatic mechanism. Barres and Reyes built networks
in cell culture of different size and find scaling of the synaptic weights W oc K06
as opposed to the predicted value of W oc K% for this model. Not bad!
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1.2 Circuit model

We now consider the consequences on the choice of connections in a network to
maintain the balanced state. Consider a network of a population of excitatory (E)
and inhibitory (I) cells:

K
pi(t) = g+ WEEVE(®) Z WEVI(1) (1.10)
j:l
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As in the case of the model cell, we will scale the synaptic inputs by 1/ VK

EFE 11 EI 1E
g g W WP W

VK Y VK'Y VK Y VK

and as will be clear soon, we need to scale the external inputs by

E L VKEm,: ul— VKIm, (1.12)

where E and [ are scales of O(1), so that

EE'K W

pE@t) = VKEm,+ Z VE(t) - Z VIt) (1.13)

WIiE K WH
pi(t) = vVKIm,+ Z VE(t) Z V(1)
Let’s write the average activities, the so-called order parameters, as

melt) = - VI (1.14)

milt) = 3 V)

VE() = H(pf(t)-0F) (1.15)
VItt) = H(pl(t)-0!) (1.16)
(1.17)

H(-) is the Heavyside function, and the #F and 0! are threshold functions. Note

that the order parameters are small,
{A} The distribution of

the rates cf neurons in the
excitatory population for dif-
ferent population-averaged
rates: {solid line) mg = 0.01
and (dashed ine}m,. = 0.03. -
The rate distribution is \ ..
shown in terms of the local ; el \
rales divided by the mean 05 i - 0 40 60 80
rate.  (B) The distnbution Rate/mean rate Rate (Hz)
of firing rates of neurans in the right prefrontal cortex of a monkay attending to a variety of stimuli (light
source and sound) and executing simple reaching moverments.  The rates were averaged over the
duration of events (stimuli or movements) that showed a significant response. The average ratewas 15.8
Hz. Most celis fire at a lower rate, whereas a small fraction of the cells fire at much higher rates.
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The order parameters allows us to write equations for the average input, i.e.,

EEK EIK

Z<VE Z<V1 ) > (1.18)

VKEm, + \/_ WEEmE( ) — \/ﬁwﬂm,( t)

< pg(t) > = VKEm, +

and

EEK EIK

Z<VE Z<V*’ ) > (1.19)

= \/Kfmo+\/_ WIEmE()—\/_ WHmI()

As VK — oo the left hand side goes to zero and the equilibrium state will satisfy

<prt)> = VKIm,+

1
0 (ﬁ) = Em, + W Emp — WHm, (1.20)

= Im,+W¥rmp —Whm,;

The implication of this equilibrium is that the average input remains finite as the
fluctuations remain large. This is the balanced state. Solving gives relations for the
equilibrium activity of the excitatory and inhibitory cells in terms of the external
drive:

WHE _ WEIT
ME = JWEBWIT — WWEIWIE " (1.21)
nd WIEE — WEE]
mp = (1.22)

WEEWII — WEWIE"
The equilibrium values of activity mg and m; must be positive. If we wish to
avoided saturated solutions This requires:

E WEI WEE
The final point concerns dynamics. The dynamic of the order parameters, defined
above, follow Glauber dynamics - a formalism for binary variables. Thus, without

derivation, the equation for the ¢-th excitatory neuron is

TEW = —mp,(t)+H (uf(t) — ef) : (1.24)

If we look at the entire network, we can replace the thresholded inputs from the
neighbors by the probability that neighboring cells are firing. This will depend on
the mean input and on the variance in the input. The mean inputs at equilibrium,
from above, are

pp = VEKEm,+VEWPPmg —VKWE m; — 05 (1.25)
Hnr = \/?Imo + \/EWIETI’LE - \/EWIITI’L[ - 0[.
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The variance to excitatory cells, 0%(t), is given by

o3(t) = (W) mp(t) + (W5 mi(t) (1.26)

with a similar expression for the inhibitory cells, i.e.,

o3(t) = (W) mu(t) + (W) my (1) (1.27)
50 that EE\2 2 IE\2 2
(WE2)2oi(t) — W =) og(t)
(WED2(WTE)2 — (WEEY2(WIT)2
We approximate the noise by a Gaussians so that we can estimate when the input
exceeds the threshold level 6% i.e.,

(1.28)

dmp(t 1 >
TE mdb;() = —mg(t) + /2 /QE e~ (e=r 2% gy (1.29)
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E _ pE
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For a small ratio of mean input to standard deviation, the erfc can be expanded as

—2
e
erfc(z) &~ —. (1.31)
2nx
In equilibrium, dmﬁ(t) = 0 so so we have a nonlinear relation between the average

input, < up > and the variances 0% and o7 at equilibrium. This leads to a leading

term:
pF ~ 0F + opy\/2|logmp| (1.32)

(CHECK SIGN OF 6#%). We see that the average activity is driven, almost linearly,
by the standard deviation of the input. There is ample evidence from Fairhall that
variance with drive spikes from a neuron, although a gain curve for spike rate versus
the standard deviation is not to be found in the literature.
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