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1 Balanced networks: Trading speed for noise

1.1 Scaling of neuronal inputs

An interesting observation is that the subthresold neuronal voltage in cortical neu-
rons is very noise. Naively, one might expect that the subthreshold potential would
be noisy if there ware relatively few inputs, not inconstent with the notion of a few
strong inputs that one sees in cortical slice experiments. But the other possibility
is that the input is so noisy because large excitatory inputs are offset by large in-
hibitory inputs, so that their mean value just about cancels but the variances, of
course, add. The notion of large offsetting currents comes from the intracellular
recording experiments in cat V1 rom the laboratories of Ferster, Fregnac, Douglas
and others, in which the excitatory and inhibitory inputs are found to be both large
and have the same tuning curves, so that their inputs act to balance earn other.
The gain from offsetting currents is that a transient increase in excitatory input, as
may occur with a large burst of input, will rapidly depolarize the cell. So balanced
networks trade noise for speed.

Let’s start with a warm up on scaling of noise. The input to cell i is µi with
i = 1, 2, ... , N , while the output of the neuron is take as taken as Vi with i =
1, 2, ... , N where V is a binary variable, 1 if the cell spikes and 0 if it does not.
Let’s say that of the N neurons in the network, only K make synaptic input to the
i − th neuron. Let’s also say that the probability that a cell is spiking is m, that
is, V = 1 with probability m and V = 0 with probability 1 −m. The input to the
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i− th neuron is:

µi ≡
K∑
j=1

WijSj. (1.1)

Let’s address the central issue, which is scaling of the synaptic inputs. The standard
thermodynamic scaling is that each input scales as 1/K. For simplicity, let’s take
all of the inputs to be equal, so

Wij →
W

K
. (1.2)

Then

µi =
W

K

K∑
j=1

Vj. (1.3)

The average value is

< µ > =
W

K

K∑
j=1

< Vj > (1.4)

=
W

K

K∑
j=1

m

= Wm

and the variance, under the assumption that the correlations in the neuronal outputs
are zero, is

< µ2 > =
(
W

K

)2 K∑
j=1

(Vj− < Vj >)2 (1.5)

=
(
W

K

)2
 K∑
j=1

V 2
j −K < Vj >

2


=

W 2

K

(
m−m2

)
=

(Wm)2

Km
(1−m)

which is always positive and, crucially, diminishes as mK →∞.
The challenge is to recast the input so that the variance does not diminish as a

function of K. This is where the idea of balanced excitation and inhibition come in
to play. We need the input to be the sums of two terms, and we also need to noodle
with the scaling so that the variance goes to a constant as mK → ∞. Let WE

ij be
excitatory input and W I

ij be inhibitory input, simplified as above but now scaled as

1/
√
K, so that

WE
ij →

WE

√
K
, W I

ij → −
W I

√
K

(1.6)

where we implicitly fix the sign of the inhibition, and

µi =
K∑
j=1

(
WE
ij V

E
j +W I

ijV
I
j

)
(1.7)
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=
WE

√
K

K∑
j=1

V E
j −

W I

√
K

K∑
j=1

V I
j .

The average value is

< µ > =
WE

√
K
KmE − W I

√
K
KmI (1.8)

=
√
K
(
WEmE −W ImI

)
which can be large if the excitatory and inhibitory terms do not balance. The
variance, again under the assumption that the correlations in the neuronal outputs
are zero, is

< µ2
i > =

(WE)2

K

(
mE − (mE)2

)
K +

(W I)2

K

(
mI − (mI)2

)
K (1.9)

= (WEmE)2
1−mE

mE
+ (W ImI)2

1−mI

mI
.

The important point is that there is no decrement as mEK → ∞ or mIK → ∞.
Further, the variance remains nonzero for the special case of WEmE = W ImI where
tthe network is in perfect balance.

Before we go further, it is fair to ask if there is evidence to support this scaling,
which would depend on a homeostatic mechanism. Barres and Reyes built networks
in cell culture of different size and find scaling of the synaptic weights W ∝ K−0.6

as opposed to the predicted value of W ∝ K−0.5 for this model. Not bad!

1.2 Circuit model

We now consider the consequences on the choice of connections in a network to
maintain the balanced state. Consider a network of a population of excitatory (E)
and inhibitory (I) cells:

µEi (t) = µEo +
K∑
j=1

WEE
i,j V

E
j (t) +

K∑
j=1

WEI
i,j V

I
j (t) (1.10)

µIi (t) = µIo +
K∑
j=1

W II
i,j V

I
j (t) +

K∑
j=1

W IE
i,j V

E
j (t)
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As in the case of the model cell, we will scale the synaptic inputs by 1/
√
K

WEE
ij →

WEE

√
K
, W II

ij → −
W II

√
K
, WEI

ij → −
WEI

√
K

; W IE
ij →

W IE

√
K
. (1.11)

and as will be clear soon, we need to scale the external inputs by

µEo →
√
KEmo; µIo →

√
KImo (1.12)

where E and I are scales of O(1), so that

µEi (t) =
√
KEmo +

WEE

√
K

K∑
j=1

V E
j (t)− WEI

√
K

K∑
j=1

V I
j (t) (1.13)

µIi (t) =
√
KImo +

W IE

√
K

K∑
j=1

V E
j (t)− W II

√
K

K∑
j=1

V I
j (t).

Let’s write the average activities, the so-called order parameters, as

mE(t) =
1

NE

NE∑
i=1

V E
i (t) (1.14)

mI(t) =
1

NI

NI∑
i=1

V I
i (t)

where the inputs are connected by

V E
i (t) = H

(
µEi (t)− θEi

)
(1.15)

V I
i (t) = H

(
µIi (t)− θIi

)
(1.16)

(1.17)

H(·) is the Heavyside function, and the θEi and θIi are threshold functions. Note
that the order parameters are small,
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The order parameters allows us to write equations for the average input, i.e.,

< µE(t) > =
√
KEmo +

WEE

√
K

K∑
j=1

< V E
j (t) > −W

EI

√
K

K∑
j=1

< V I
j (t) > (1.18)

=
√
KEmo +

√
KWEEmE(t)−

√
KWEImI(t)

and

< µI(t) > =
√
KImo +

WEE

√
K

K∑
j=1

< V E
j (t) > −W

EI

√
K

K∑
j=1

< V I
j (t) > (1.19)

=
√
KImo +

√
KW IEmE(t)−

√
KW IImI(t)

As
√
K →∞ the left hand side goes to zero and the equilibrium state will satisfy

0

(
1√
K

)
= Emo +WEEmE −WEImI (1.20)

= Imo +W IEmE −W IImI

The implication of this equilibrium is that the average input remains finite as the
fluctuations remain large. This is the balanced state. Solving gives relations for the
equilibrium activity of the excitatory and inhibitory cells in terms of the external
drive:

mE =
W IIE −WEII

WEEW II −WEIW IE
mo. (1.21)

and

mI =
W IEE −WEEI

WEEW II −WEIW IE
mo. (1.22)

The equilibrium values of activity mE and mI must be positive. If we wish to
avoided saturated solutions This requires:

E

I
>
WEI

W II
>
WEE

W IE
< 1 (1.23)

The final point concerns dynamics. The dynamic of the order parameters, defined
above, follow Glauber dynamics - a formalism for binary variables. Thus, without
derivation, the equation for the i-th excitatory neuron is

τE
dmE,i(t)

dt
= −mE,i(t) +H

(
µEi (t)− θEi

)
. (1.24)

If we look at the entire network, we can replace the thresholded inputs from the
neighbors by the probability that neighboring cells are firing. This will depend on
the mean input and on the variance in the input. The mean inputs at equilibrium,
from above, are

µE =
√
KEmo +

√
KWEEmE −

√
KWEImI − θE (1.25)

µI =
√
KImo +

√
KW IEmE −

√
KW IImI − θI .
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The variance to excitatory cells, σ2
E(t), is given by

σ2
E(t) =

(
WEE

)2
mE(t) +

(
WEI

)2
mI(t) (1.26)

with a similar expression for the inhibitory cells, i.e.,

σ2
I (t) =

(
W IE

)2
mE(t) +

(
W II

)2
mI(t) (1.27)

so that

mE(t) =
(WEE)2σ2

I (t)−W IE)2σ2
E(t)

(WEI)2(W IE)2 − (WEE)2(W II)2
. (1.28)

We approximate the noise by a Gaussians so that we can estimate when the input
exceeds the threshold level θE, i.e.,

τE
dmE(t)

dt
= −mE(t) +

1√
2π σ

∫ ∞
θE

e−(x−µ
E)2/2σ2

E dx (1.29)

= −mE(t) +
1√
π

∫ ∞
√
2(µE−θE)/σE

e−x
2

dx (1.30)

≡ −mE(t) +
σE√

2
erfc

(
µE − θE√

2σE

)

For a small ratio of mean input to standard deviation, the erfc can be expanded as

erfc(x) ≈ e−x
2

√
2πx

. (1.31)

In equilibrium, dmE(t)
dt

= 0 so so we have a nonlinear relation between the average
input, < µE > and the variances σ2

E and σ2
I at equilibrium. This leads to a leading

term:
µE ≈ θE + σE

√
2|logmE| (1.32)

(CHECK SIGN OF θE). We see that the average activity is driven, almost linearly,
by the standard deviation of the input. There is ample evidence from Fairhall that
variance with drive spikes from a neuron, although a gain curve for spike rate versus
the standard deviation is not to be found in the literature.

6


